ADB DEVICES >> No Devices Found

When building apps for Android using obscure devices such as the one I was using, sometimes the ADB (Android Debug Bridge) cannot find the device. I spent a long time trying to find out why my device was not appearing in adb, as Windows picked it up in the Device Manager and in Windows Explorer.

Usually, just installing the “Google USB Driver” by using the Android SDK Manager, results in all you problems going away. But, with the more obscure devices, this sometimes does not fix the issue.

The first step is to ensure that the device is installed. This can be checked by using the Windows Device Manager. If the device is not installed, it will be under “Other Devices”, then you just need to install it manually. If you downloaded the drivers by using the Android SDK Manager, then you can find them in a subfolder of the SDK ([sdk]\extras\google\usb_driver\). There should be a file called android_winusb.inf. There is also another way to obtain these drivers without using the Android SDK Manager, and that is directly off their website (latest_usb_driver_windows.zip). You can then extract the files to a convenient location so that you can install the drivers using the Device Manager.

  1. To install the drivers, you can right click the “Unknown Device” under “Other Devices” (It may be a partial/vague bit of a device name – for example, mine is just “Full”), and click “Update Device Software…”. This will start the wizard.
  2. On the first page, you can click “Browse my computer for driver software” (we want to select our downloaded files manually).
  3. We then click the “Let me pick from a list of device drivers on my computer” button as we want to do the install manually as Windows will not detect the driver as they are generic.
  4. The first item in the list of hardware types will be “Show All Devices”, select that and press “Next”.
  5. On the next page, there will be a “Have Disk…” button. Press that and then we can browse to where we have either extracted or installed the drivers to (the file we must select is android_winusb.inf). Press “OK” and then you should be back to the page that contains the “Have Disk…” button.
  6. Above the button will be a list with 3 items, select the “Android ADB Interface” and press “Next”.
  7. Windows will show a warning dialog that says that the device driver is not recommended. We can safely press “Yes” as this is just because this is a generic driver.
  8. Windows will install the driver and when it is finished, we can close the window.

Our device (“Android ADB Interface”) should now be under the “Android Device” item. The device is just installed, and this may be all we need. You can run the ADB DEVICES command to see if the device is detected.

If the device is not detected, then we may have to manually specify the device as a valid Android device for ADB. In order to do this we need to find out our device Hardware ID.

  1. We can obtain the Hardware ID via the Device Manager. We can just right-click out newly installed “Android ADB Interface” item and press “Properties”.
  2. On the “Details” tab, select “Hardware IDs” from the dropdown. There may be one or more items here, but you can use the one that starts with “USB\VID_####” (the #### is the 4 character device Hardware ID). I have an item labeled “USB\VID_2207&PID_0010&REV_0222&MI_01”, thus my Hardware ID is “2207”.
  3. Now, the short way to add the device to ADB is to just add the device Hardware ID to the adb_usb.ini file (%USERPROFILE%.android\adb_usb.ini).
  4. If this file does not exist, you can safely create it.
  5. Open the file in Notepad and add a new line to the end of the file in the form “0x####” (again the #### is the Hardware ID). In the case of my device, I added a line “0x2207” to the bottom of the file.

You should be able to now restart ADB and the device should be listed. You can do a restart by running 2 commands ADB KILL-SERVER and then ADB START-SERVER.

As the Android SDK Manager may overwrite the files here, you changes may be lost later. The correct way to ensure the install the device for ADB is to create a new add-on. This is simply creating a new file in a new folder under the “add-ons” folder in the SDK ([sdk]\add-ons\).

  1. The first thing to do is create a new folder for you add-on. You can pick any folder name as long as it won’t conflict with any other add-ons. I picked “small-tablet” as I don’t think that is a add-on name that is used elsewhere.
  2. Inside that new folder, create a manifest.ini file.
    • name – the add-on name
    • api – the API level on the device – mine was 4.0, thus 14
    • usb-vendor – the hex Hardware ID – mine was 2207, thus it will be 0x2207
  3. The item should now appear in the Android SDK Manager under “Extras”.

The contents of the manifest.ini file should be something like this, with the most important items:

name=small-tablet
vendor=Who Knows
description=That cheap 7″ tablet
api=14
revision=1
usb-vendor=0x2207

And there we go, we now have a nameless device in our Android SDK Manager.

Binding Flurry Analytics with Xamarin

Over the last few days I have been creating a Xamarin.iOS and Xamarin.Android binding for Flurry Analytics SDKs. Flurry Analytics is a neat little library that allows for tracking of your app usage and various user stats.
And, because I really enjoyed my time doing this, I thought that I will share just a bit of the fun times and the not-so-fun times.

I have split this project up into four parts:

  1. Introduction and Pre-requisites
  2. Xamarin.iOS binding
  3. Xamarin.Android binding
  4. Flurry.Analytics in the wild

Pre-requisites

Before we start any coding, we need to get all our tools and files needed for the actual binding tasks.

I was using both Windows 8, with Visual Studio, and Mac OS X with Xamarin Studio. You can bind the Android library on either platform, but for iOS, it is easier to use the Mac. In this case, I will use the Mac for both iOS and Android.

Some of my very excellent sources for this process were the actual Xamarin documentation:

But, along with this info, there are just a few things that you may need. Firstly, it is good to update your Xamarin Studio to the latest stable release as this makes sure that all potential problems are minimized from the start.

Then, the next cool tool to get hold of is, Objective Sharpie, for binding iOS libraries. This tool is quite nifty for quickly generating the .NET interfaces from the Objective-C header files. It uses the header files not the actual compiled native library. The Xamarin docs on Objective Sharpie has a brief walkthrough on how to use the tool, so I will assume you know how to use it.

After we have all our tools ready to go, we need those SDKs from Flurry.

What I did was to create a free account by Flurry, and then created an Android and iOS Application using their dashboard. You have to have an application before they will let you download their SDKs. This step is pretty straight forward, so I won’t go into it here right now. Once you have created and downloaded the SDKs, you can extract them to a nice location for reference.

Now to get started with the real work…

But, as this is quite a long process, I will be splitting this article into this intro, the iOS binding and the Android binding. So, enjoy!

Binding Flurry Analytics with Xamarin.iOS

This week, I needed to use Flurry Analytics in my Xamarin.iOS and my Xamarin.Android apps, but there was no .NET SDK for these platforms. Flurry did provide a SDK for each platform, but it was the native libraries, which cannot be used directly in .NET. Given this, I decided to bind those native libraries using Xamarin.iOS and Xamarin.Android.

I have split this project up into four parts:

  1. Introduction and Pre-requisites
  2. Xamarin.iOS binding
  3. Xamarin.Android binding
  4. Flurry.Analytics in the wild

The first thing we are going to bind is the iOS SDK for Flurry Analytics. This task needs two things from the downloaded SDK:

  • [iOS-sdk-path]/Flurry-iOS-5.2.0/Flurry/Flurry.h
  • [OS-sdk-path]/Flurry-iOS-5.2.0/Flurry/libFlurry_5.2.0.a

Of course, the version numbers may change for later releases. The header file (.h) is going to be used to generate the .NET interfaces and enums. The library (.a) is going to be used in the project.

Just before we do the cool things, we should just create our C# solution for the Xamarin.iOS binding. Just create a new project/solution and select the “iOS Binding Project” template. For my project name I used Flurry.Analytics.iOS, but you could use anything.

The default project has a few files in it, we will have a look at each one in depth as we go through the binding steps:

  • ApiDefinition.cs (this is for the generated .NET interfaces from Objective Sharpie)
  • AssemblyInfo.cs (the usual assembly information attributes)
  • Extras.cs (this is for any additional changes that are needed for the bound types)
  • StructsAndEnums.cs (this is for any extra types that you wish to include in the final assembly)

Creating the Initial Binding

This step will involve using Objective Sharpie to get us started, but we will almost always have to go in and tweak a few things.

So, first things first, open Objective Sharpie and start the wizard. Select the Flurry.h header file, and I used the namespace Flurry.Analytics. After saving your file somewhere, we can start the tweaks. I don’t save the result into my solution as the amount of tweaks needed is high enough that I like to have a before and after file. Also, this library is very small. But, there is no reason why you couldn’t just save over the ApiDefinition.cs file in you project.

Before we start, here is a snippet from the Flurry.h file:

    // an enum
    typedef enum {
        FlurryLogLevelNone = 0,
        FlurryLogLevelCriticalOnly,
        FlurryLogLevelDebug,
        FlurryLogLevelAll
    } FlurryLogLevel;

    // the main class
    @interface Flurry : NSObject {
    }
    // ...
    + (void)setAppVersion:(NSString *)version;
    + (NSString *)getFlurryAgentVersion;
    + (void)startSession:(NSString *)apiKey;
    // ...
    @end

In this snippet of Objective-C goodness, there is an enum named FlurryLogLevel and an @interface named Flurry. This will translate into a C# enum and class respectively. It is also good to note that all the methods on this particular type will be static.

The generated C# for this snippet is:

    // the enum
    public enum FlurryLogLevel : [unmapped: unexposed: Elaborated] {
        None = 0,
        CriticalOnly,
        Debug,
        All
    }

    // the main class
    [BaseType (typeof (NSObject))]
    public partial interface Flurry {
        // ...
        [Static, Export ("appVersion")]
        [Verify ("ObjC method massaged into setter property", "Flurry/Flurry.h", Line = 61)]
        string AppVersion { set; }

        [Static, Export ("getFlurryAgentVersion")]
        [Verify ("ObjC method massaged into getter property", "Flurry/Flurry.h", Line = 80)]
        string GetFlurryAgentVersion { get; }

        [Static, Export ("startSession:")]
        void StartSession (string apiKey);
        // ...
    }

As you can see, the generated file is similar, but not quite the same.

Tweaking the Generated Binding (ApiDefinition.cs)

After we generated our C# files, there are several things to note:

  • This code doesn’t compile at all
  • A good few of our methods are set to properties, especially note the setter-only ones
  • There is a [Verify(...)] attribute which doesn’t even exist
  • Some [Export] attributes have a value that ends in a colon (:), and others do not
  • The type is not a class but an interface
  • The base type is specified as a [BaseType] attribute
  • The enum has the item prefixes removed

This is quite a list here, but not all are bad. Objective Sharpie can’t generate perfect code as Objective-C is not C#, so there will always be human intervention. In these cases, it will generate what it thinks to be best and then let you know.

The [Verify] attribute is one way that Objective Sharpie lets you know that it changed something. In this instance, it is letting us know that it changed the setAppVersion method into a property. This is because usually there is both a getter and a setter method for a Objective-C property. But in this case, it is actually a method.

As you may note, these properties have a slightly different [Export] attribute in that these members don’t end in a colon. This is valid for Objective-C property setters, but as this is a method, we should add a colon back. It is also valid for methods that take parameters.

So, to fix those properties, remove the [Verify] attribute. We should also fix the exported name, and for the setter property, add the colon back in.

    [BaseType (typeof (NSObject), Name = "Flurry")]
    public partial interface FlurryAgent {

        [Static, Export ("setAppVersion:")]
        void SetAppVersion (string version);

        [Static, Export ("getFlurryAgentVersion")]
        string GetFlurryAgentVersion ();

        [Static, Export ("startSession:")]
        void StartSession (string apiKey);

    }

As you can see here, I corrected the SetAppVersion write-only property by transforming it into a void method that exports to setAppVersion:. Note the full name and colon as this method takes a parameter.

Also, I needed to fix the GetFlurryAgentVersion read-only property by transforming it into a string method that exports to “getFlurryAgentVersion”. Note the lack of colon as this method takes no parameters.

And finally, I decided I wanted my final class to be called FlurryAgent to avoid confusion with the namespace as well as indicate that it was the Agent. In order to do this, All I needed to do was to rename the type and add the Name property in the attribute with a value of "Flurry".

The reason for adding this property is, after changing the type name, the binding no longer will be able to find the underlying Objective-C type. Usually the binding will use the default name if none is provided, the C# class name. After changing it, it no longer reflected the Objective-C type name, hence the new property.

Managing the Structures and Enumerations (StructsAndEnums.cs)

The last thing to fix, in the generated code, is the enum.

This is simple to do, just remove the strange attribute-like bit: [unmapped: unexposed: Elaborated].

One of the nice things of Objective Sharpie is that it removes the enum prefixes and just uses the relevant bits. For example the original item was FlurryLogLevelNone, but this is now just None.

The final enum looks like this after it has been moved to StructsAndEnums.cs:

    public enum FlurryLogLevel {
        None = 0,
        CriticalOnly,
        Debug,
        All
    }

So far, all our generated code has been moved into either, ApiDefinitions.cs (the class), or StructsAndEnums.cs (the enum). We are still not complete yet, but we are nearly there.

Additional Binding Code (Extras.cs)

Once we have the basic binding done, we can always extend what the native library provided with extra features. This is done by adding new source files to the project.

For example, if for some reason you need to add any extra bindings to the library, say to access a private member or even just to make the new API cleaner and more .NET-like.

For example you could do something like this:

    public partial class FlurryAgent : NSObject {
        public static void LogTimedEvent (string eventName, Action action) {
            try {
                FlurryAgent.LogEvent (eventName, true);
                action(); // do our task
            } catch {
                FlurryAgent.EndTimedEvent (eventName, null);
                throw;
            }
        }
    }

What is happening here is that I am adding a new method to the final .NET assembly. This method can make use of the methods in the API definition interface. In this particular example, I am adding a method that can take an Actionand make sure that we fire a ‘starting’ and then an ‘ending’ event to the Flurry servers. This is a new bit of functionality that can be baked right into the binding assembly.

Working with the Native Library (.a)

This step is actually quite easy, just add the native library (.a) to the project, and you are almost done.

When you add the native library to the project, Xamarin Studio will create a new .linkwith.cs file that matches the library name. For example with Flurry, I added the libFlurry_5.2.0.a library to my project and it generated a libFlurry_5.2.0.linkwith.cs.

This new file is the last bit that needs to be done. It is for the linker when using this library in an iOS app. It usually will contain only a single line, a single [LinkWith] attribute. This attribute allows you to specify what targets this library can be used with, what extra iOS frameworks are needed, etc:

    [assembly: LinkWith (
        "libFlurry_5.2.0.a", 
        LinkTarget.Simulator | LinkTarget.ArmV6 | LinkTarget.ArmV7 | LinkTarget.ArmV7s, 
        ForceLoad = true)]

This is the default line, split for readability, and usually it is all that is needed. What this does is say that the linker must use the libFlurry_5.2.0.a native library as well as this library can be used on the Simulator and all the devices. The ForceLoad is used by the Xamarin.iOS linker, and specifies a linker flag. According to the documentation, this should always be true for now.

But just before we finish up, we need to add any required frameworks. Without this, there will be strange happenings…but different depending the configuration.

If building for Debug, the app will launch, but nothing will happen at all. The methods can be called and everything, but no actions will take place.

If building for Release, the linker will throw an error:

Error MT5211: Native linking failed, undefined Objective-C class: _OBJC_CLASS_\$_Flurry.
If ‘_OBJC_CLASS_\$_Flurry’ is a protocol from a third-party binding, please check that it has the [Protocol] attribute in its api definition file, otherwise verify that all the necessary frameworks have been referenced and native libraries are properly linked in.

This error is giving us lots of information for @protocol, but as we don’t have any in our project (recall the @interface), we can safely ignore the first part of the second message and focus on the ‘frameworks’ part. According to the Flurry documentation, the Security.framework is required and the SystemConfiguration.framework is optional, but recommended.

So, I added both frameworks, using the Frameworksproperty:

    [assembly: LinkWith (
        "libFlurry_5.2.0.a",
        LinkTarget.Simulator | LinkTarget.ArmV6 | LinkTarget.ArmV7 | LinkTarget.ArmV7s, 
        ForceLoad = true, 
        Frameworks = "SystemConfiguration Security")]

As shown here, the frameworks are space-separated and do not have the .framework extensions.

Finishing Up

So far we have defined our API, added any additional logic or types, added the native library, set up the linker and specified the frameworks. This is all that is needed, so our library should build fine now and we should be able to use it in an Xamarin.iOS app:

    // the methods
    FlurryAgent.StartSession("PQSZJRK4B5BW8Q7YQQXF");

    // the properties that we changed back into methods
    FlurryAgent.GetFlurryAgentVersion ();

    // the extra method that we added
    FlurryAgent.LogTimedEvent ("started", () => {
        // ...
    });

Under the Hood

One thing to know is that the iOS binding project is actually not really compiled directly, but are a series of stages. Each file actually has a different build action.

The first stage to building the binding is to build a reference assembly with the files:

  • ApiDefinition.cs (with build action ObjcBindingApiDefinition)
  • StructsAndEnums.cs (with build action ObjcBindingCoreSource)

Next, this assembly is then reflected to generate the actual binding code. This generated code is then compiled with the rest of the files:

  • Extras.cs (with build action Compile)
  • StructsAndEnums.cs (again with build action ObjcBindingCoreSource)
  • libFlurry_5.2.0.linkwith.cs (with build action Compile)
  • libFlurry_5.2.0.a (with build action ObjcBindingNativeLibrary but is actually just a resource)

An example of the generated code in the second stage, the interface member void StartSession(string) is actually used to generate a big block of code:

    [Export ("startSession:")]
    [CompilerGenerated]
    public static void StartSession (string apiKey)
    {
        if (apiKey == null)
            throw new ArgumentNullException ("apiKey");
        var nsapiKey = NSString.CreateNative (apiKey);

        MonoTouch.ObjCRuntime.Messaging.void_objc_msgSend_IntPtr (class_ptr, selStartSession_Handle, nsapiKey);
        NSString.ReleaseNative (nsapiKey);
    }

This is all the magic that happens under the hood to redirect values from the managed .NET to the underlying native library.

GoMetro App

App Icon
GoMetro is an app designed for your travel needs. It brings together announcements, timetables, maps and more. Also it provides an easy-to-use journey planner that will give you more flexibility when commuting.

Main Screen Results Screen

New Features

  • Metrorail timetables
  • Favourites
  • Fare calculator
  • Railway line maps
  • Announcements
  • OS theme aware
  • Fast and easy-to-use

Privacy Policy

The GoMetro app takes your privacy very seriously and does not, in any way, share, store information about your phone or identity number.